Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
Ital J Pediatr ; 50(1): 85, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654395

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) are monogenic in some cases, however, there are still no clear guidelines on genetic testing in the clinical practice of SRNS in children. METHODS: Three hundred thirty-two children were diagnosed with SRNS, and all children underwent genetic testing, including gene panels and/or whole-exome/genome sequencing (WES/WGS), during treatment. We analysed the relationship between clinical manifestation and genotype, and compared different genetic testing methods' detection rates and prices. RESULTS: In this study, 30.12% (100/332) of children diagnosed with SRNS had monogenic causes of the disease. With 33.7% (122/332) of children achieving complete remission, 88.5% (108/122) received steroids combined with tacrolimus (TAC). In detectability, WES increased by 8.69% (4/46) on gene panel testing, while WGS increased by 4.27% (5/117) on WES, and WES was approximately 1/7 of the price of WGS for every further 1% increase in pathogenicity. CONCLUSIONS: We verified that steroids combined with TAC were the most effective option in paediatric SRNS. In detection efficiency, we found that WGS was the highest, followed by WES. The panel was the lowest, but the most cost-effective method when considering the economic-benefit ratio, and thus it should be recommended first in SRNS.


Genetic Testing , Nephrotic Syndrome , Humans , Nephrotic Syndrome/genetics , Nephrotic Syndrome/drug therapy , Child , Genetic Testing/methods , Male , Female , Child, Preschool , Infant , Drug Resistance/genetics , Adolescent , Tacrolimus/therapeutic use , Retrospective Studies , Exome Sequencing
2.
Genes Dis ; 11(4): 101126, 2024 Jul.
Article En | MEDLINE | ID: mdl-38560502

Dissecting the genetic components that contribute to the two main subphenotypes of steroid-sensitive nephrotic syndrome (SSNS) using genome-wide association studies (GWAS) strategy is important for understanding the disease. We conducted a multicenter cohort study (360 patients and 1835 controls) combined with a GWAS strategy to identify susceptibility variants associated with the following two subphenotypes of SSNS: steroid-sensitive nephrotic syndrome without relapse (SSNSWR, 181 patients) and steroid-dependent/frequent relapse nephrotic syndrome (SDNS/FRNS, 179 patients). The distribution of two single-nucleotide polymorphisms (SNPs) in ANKRD36 and ALPG was significant between SSNSWR and healthy controls, and that of two SNPs in GAD1 and HLA-DQA1 was significant between SDNS/FRNS and healthy controls. Interestingly, rs1047989 in HLA-DQA1 was a candidate locus for SDNS/FRNS but not for SSNSWR. No significant SNPs were observed between SSNSWR and SDNS/FRNS. Meanwhile, chromosome 2:171713702 in GAD1 was associated with a greater steroid dose (>0.75 mg/kg/d) upon relapse to first remission in patients with SDNS/FRNS (odds ratio = 3.14; 95% confidence interval, 0.97-9.87; P = 0.034). rs117014418 in APOL4 was significantly associated with a decrease in eGFR of greater than 20% compared with the baseline in SDNS/FRNS patients (P = 0.0001). Protein-protein intersection network construction suggested that HLA-DQA1 and HLA-DQB1 function together through GSDMA. Thus, SSNSWR belongs to non-HLA region-dependent nephropathy, and the HLA-DQA/DQB region is likely strongly associated with disease relapse, especially in SDNS/FRNS. The study provides a novel approach for the GWAS strategy of SSNS and contributes to our understanding of the pathological mechanisms of SSNSWR and SDNS/FRNS.

3.
Antonie Van Leeuwenhoek ; 117(1): 18, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38190009

A Gram-stain-positive, rod-shaped, non-spore-forming and non-motile bacterium, designated WY-20T, was isolated from a lakeside soil sample collected in Jiangxi Province, PR China. Growth was observed at 20-42 °C (optimum 30 °C), pH 5.0-8.0 (optimum pH 7.0) and salinity of 0-3.0% (w/v; optimum 0.5%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain WY-20T belongs to the genus Nocardioides and showed the highest sequence similarity (98.1%) to N. phosphati WYH11-7T, followed by N. cavernaquae K1W22B-1T (97.8%), N. marmoriterrae JOS5-1T (97.2%) and N. jensenii NBRC 14755T (97.1%). The average nucleotide identity and digital DNA-DNA hybridization values between strains WY-20T and N. phosphati WYH11-7T were 83.5% and 26.2%, respectively. The predominant fatty acids (≥ 10% of the total fatty acids) were C18:1ω9c, C17:0, C16:0, summed feature 8 (C18:1ω7c and/or C18: 1ω6c) and C17:1ω9c. The major menaquinone was MK-8 (H4). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unidentified phospholipids. In addition, meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. Based on phenotypic, genotypic and phylogenetic pieces of evidence, strain WY-20T represents a novel species in the genus Nocardioides, for which the name Nocardioides jiangxiensis sp. nov. is proposed. The type strain is WY-20T (= GDMCC 4.317T = KACC 23379T).


Fatty Acids , Nocardioides , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA
4.
Lupus ; 33(3): 223-231, 2024 Mar.
Article En | MEDLINE | ID: mdl-38214324

OBJECTIVES: Observational studies indicate a significant correlation between systemic lupus erythematosus (SLE) and endocrine and metabolic disorders, but the causal association between SLE and endocrine and metabolic disorders remains unclear due to the reverse causality and confounding biases commonly presented in conventional observational research. This study endeavors to uncover the causal association between SLE and three common endocrine and metabolic disorders, including Graves' disease (GD), type 2 diabetes mellitus (T2DM), and osteoporosis (OP). METHODS: We used genome-wide association study data for SLE and three endocrine and metabolic disorders in an East Asian population, employing bidirectional two-sample Mendelian randomization (MR) analysis and sensitivity analysis to ascertain the causal association between SLE and endocrine and metabolic disorders. RESULTS: A multiplicative random-effect inverse-variance weighted approach revealed a significant positive correlation between SLE and an elevated risk of GD with an odds ratio (OR) of 1.12 (95% CI: 1.04-1.22, p < .01), and inverse-variance weighted (IVW) analysis also indicated that SLE increased the risk of OP with an OR of 1.035 (95% CI: 1.003-1.068, p < .05). Additionally, GD causally affected SLE in an IVW analysis after Bonferroni correction, with an OR of 1.33 (95% CI: 1.19-1.49, p < .05/3), but the application of multivariable MR analysis resulted in the absence of a causal association of GD on SLE (OR 1.047, 95% CI: 0.952-1.151, p > .05). Lastly, the robustness and validity of the findings were verified through a sensitivity analysis. CONCLUSIONS: We confirmed that SLE has a causal effect on GD as well as OP, but no evidence exists to substantiate a causal link between SLE and T2DM. Our study offers valuable contributions for uncovering the etiology of SLE and endocrine and metabolic disorders and furthering disease risk research while providing potential targets for disease monitoring and therapeutic intervention.


Diabetes Mellitus, Type 2 , Lupus Erythematosus, Systemic , Metabolic Diseases , Osteoporosis , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , East Asian People , Genome-Wide Association Study , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , Mendelian Randomization Analysis , Metabolic Diseases/epidemiology , Metabolic Diseases/genetics , Polymorphism, Single Nucleotide
5.
Biomed Pharmacother ; 170: 116031, 2024 Jan.
Article En | MEDLINE | ID: mdl-38113621

BACKGROUND: Osteoarthritis (OA) is a prevalent progressive disorder. Moxibustion has found widespread use in clinical practice for OA, while its underlying mechanism remains elusive. OBJECTIVE: To investigate whether moxibustion can ameliorate OA by influencing the metabolic processes in OA and to elucidate the specific metabolic mechanisms involved. METHODS: C57BL/6J WT mice were randomly assigned to one of three groups: the SHAM group, the ACLT group, and the ACLT+M group. In the ACLT+M group, mice underwent moxibustion treatment at acupoints Shenshu (BL23) and Zusanli (ST36) for a continuous period of 28 days, with each session lasting 20 min. We conducted a comprehensive analysis to assess the impact of moxibustion on OA, focusing on pathological changes, intestinal flora composition, and serum metabolites. RESULTS: Moxibustion treatment effectively mitigated OA-related pathological changes. Specifically, moxibustion treatment resulted in the amelioration of articular cartilage damage, synovial inflammation, subchondral bone sclerosis when compared to the ACLT group. Moreover, 16S rDNA sequencing analysis revealed that moxibustion treatment positively influenced the composition of the flora, making it more similar to that of the SHAM group. Notably, moxibustion treatment led to a reduction in the abundance of Ruminococcus and Proteobacteria in the intestine. In addition, non-targeted metabolomics analysis identified 254 significantly different metabolites between the groups. Based on KEGG pathway analysis and the observed impact of moxibustion on OA-related inflammation, moxibustion therapy is closely associated with the cAMP-related signaling pathway. CONCLUSION: Moxibustion can relieve OA by regulating intestinal flora and via impacting cAMP-related signaling pathway.


Gastrointestinal Microbiome , Moxibustion , Osteoarthritis , Mice , Animals , Mice, Inbred C57BL , Osteoarthritis/drug therapy , Inflammation , Signal Transduction
6.
Front Immunol ; 14: 1231937, 2023.
Article En | MEDLINE | ID: mdl-37908345

Nephrotic syndrome (NS) is a relatively rare and serious presentation of IgA nephropathy (IgAN) (NS-IgAN). Previous research has suggested that the pathogenesis of NS-IgAN may involve circulating immune imbalance and kidney injury; however, this has yet to be fully elucidated. To investigate the cellular and molecular status of NS-IgAN, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and kidney cells from pediatric patients diagnosed with NS-IgAN by renal biopsy. Consistently, the proportion of intermediate monocytes (IMs) in NS-IgAN patients was higher than in healthy controls. Furthermore, flow cytometry confirmed that IMs were significantly increased in pediatric patients with NS. The characteristic expression of VSIG4 and MHC class II molecules and an increase in oxidative phosphorylation may be important features of IMs in NS-IgAN. Notably, we found that the expression level of CCR2 was significantly increased in the CMs, IMs, and NCMs of patients with NS-IgAN. This may be related to kidney injury. Regulatory T cells (Tregs) are classified into two subsets of cells: Treg1 (CCR7 high, TCF7 high, and HLA-DR low) and Treg2 (CCR7 low, TCF7 low, and HLA-DR high). We found that the levels of Treg2 cells expressed significant levels of CCR4 and GATA3, which may be related to the recovery of kidney injury. The state of NS in patients was closely related to podocyte injury. The expression levels of CCL2, PRSS23, and genes related to epithelial-mesenchymal transition were significantly increased in podocytes from NS-IgAN patients. These represent key features of podocyte injury. Our analysis suggests that PTGDS is significantly downregulated following injury and may represent a new marker for podocytes. In this study, we systematically analyzed molecular events in the circulatory system and kidney tissue of pediatric patients with NS-IgAN, which provides new insights for targeted therapy in the future.


Glomerulonephritis, IGA , Nephrotic Syndrome , Humans , Child , Glomerulonephritis, IGA/pathology , Nephrotic Syndrome/etiology , Leukocytes, Mononuclear/metabolism , Receptors, CCR7 , Kidney/pathology , HLA-DR Antigens
7.
Endocr Connect ; 12(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37682119

Introduction: Chronic thyrotoxic myopathy (CTM) is a common, easily neglected complication of hyperthyroidism. There are currently no standard diagnostic criteria for CTM, and the ultrasonic characteristics of CTM-affected skeletal muscle remain unclear. Herein, we aimed to evaluate hyperthyroid patients for CTM by ultrasound and identify ultrasonic muscle parameter cutoffs for CTM diagnosis. Materials and methods: Each participant underwent ultrasonography. The original (muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA)) and corrected (MT/height (HT), MT/body mass index (BMI), CSA/HT, and CSA/BMI) parameters of the vastus lateralis and vastus medialis (VM) were evaluated. The diagnostic effectiveness of ultrasound for predicting CTM was determined using receiver operating characteristic (ROC) curve analysis. Our study included 203 participants: 67 CTM patients (18 males, 49 females), 67 non-CTM patients (28 males, 39 females) and 69 healthy controls (20 males, 49 females). Results: The CTM group had lower muscular ultrasonic and anthropometric parameters, higher thyroid hormone and thyroid-stimulating hormone receptor antibody (TRAb) levels, and a longer duration of hyperthyroidism than the non-CTM group (P < 0.05). The VM-PA, VM-CSA, VM-CSA/HT, and VM-CSA/BMI were lower in females than in males (P < 0.05). Free thyroxine (FT4) and TRAb both showed significant negative correlations with VM-MT, VM-MT/HT, VM-CSA, and VM-CSA/HT (P < 0.05). VM-MT/BMI and VM-CSA/HT, respectively, best predicted male and female CTM (AUC = 0.84, 0.85; cutoff ≤ 0.07, < 4.01). Conclusion: Ultrasound measurement of muscular parameters, especially in the VM, is a valid and feasible way of diagnosing and characterizing possible CTM in hyperthyroidism.

8.
Blood ; 142(17): 1494-1499, 2023 10 26.
Article En | MEDLINE | ID: mdl-37624915

Here we report a new fusion gene, STRN3-RARA, in acute promyelocytic leukemia (APL). It cooperates with UTX deficiency to drive full-blown APL in mice. Although STRN3-RARA leukemia quickly relapses after all-trans retinoic acid treatment, it can be restrained by cepharanthine.


Leukemia, Promyelocytic, Acute , Animals , Mice , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Oncogene Proteins, Fusion/genetics , Tretinoin/therapeutic use
9.
Adv Sci (Weinh) ; 10(24): e2300383, 2023 08.
Article En | MEDLINE | ID: mdl-37340596

Endometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported. These models faithfully recapitulate the molecular and pathohistological characteristics of human diseases. The authors names these models and similar models for other cancers as organoid-initiated precision cancer models (OPCMs). Importantly, this approach can conveniently introduce any driver mutation or a combination of driver mutations. Using these models,it is shown that the mutations in Pik3ca and Pik3r1 cooperate with Pten loss to promote endometrial adenocarcinoma in mice. In contrast, the Kras G12D mutati led to endometrial squamous cell carcinoma. Then, tumor organoids are derived from these mouse EC models and performed high-throughput drug screening and validation. The results reveal distinct vulnerabilities of ECs with different mutations. Taken together, this study develops a multiplexing approach to model EC in mice and demonstrates its value for understanding the pathology of and exploring the potential treatments for this malignancy.


Carcinoma, Squamous Cell , Endometrial Neoplasms , Female , Animals , Mice , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Mutation/genetics , Models, Animal
10.
BMC Public Health ; 23(1): 1227, 2023 06 24.
Article En | MEDLINE | ID: mdl-37355562

BACKGROUND: Previous research has demonstrated flavonoid intake was closely related to hyperuricemia. The purpose of this study was to examine whether flavonoid intake was associated with serum uric acid and hyperuricemia in U.S. adults. METHODS: The study sample consisted of 8,760 participants enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2010. Flavonoid consumption was measured using a two-day recall questionnaire on dietary intake. Hyperuricemia was defined based on the serum uric acid levels, determined as ≥ 7 mg/dL for males and ≥ 6 mg/dL for females. The study utilized multivariate linear regression to determine the correlation between flavonoid consumption and serum uric acid levels. Additionally, analyses involving multivariate logistic regression and restricted cubic splines (RCS) were conducted to evaluate the potential link between flavonoid consumption and hyperuricemia. All analyses were adjusted for possible confounding variables. RESULTS: The study revealed a negative correlation between serum uric acid levels and elevated levels of anthocyanidins and flavanones, with significant p-trends of < 0.001 and 0.02 respectively. The multivariate analysis showed that anthocyanidins and flavanones intake had a significant negative association with the risk of hyperuricemia, with p-trend value being < 0.001 and 0.01, respectively. Flavan-3-ols, flavonols, and all flavonoids exhibited a non-linear association with the incidence of hyperuricemia, with significant p-nonlinear values of < 0.001, 0.04, and 0.01 respectively. CONCLUSION: Our study demonstrated that individuals who follow a diet rich in anthocyanins and flavanones had significantly lower serum uric acid levels and a lower incidence of hyperuricemia.


Flavanones , Hyperuricemia , Adult , Male , Female , Humans , Flavonoids , Anthocyanins , Nutrition Surveys , Cross-Sectional Studies , Uric Acid , Hyperuricemia/epidemiology , Diet , Eating , Risk Factors
11.
Antonie Van Leeuwenhoek ; 116(7): 687-695, 2023 Jul.
Article En | MEDLINE | ID: mdl-37156982

A Gram-stain-negative, rod-shaped, polar flagellated or stalked and non-spore-forming bacterium, designated LB-2T, was isolated from activated sludge. Growth was observed at 20-30 °C (optimum 28 °C), pH 6.0-8.0 (optimum pH 7.0) and salinity of 0-0.5% (w/v; optimum 0.5%). Phylogenetic analysis based on the 16S rRNA gene indicated that strain LB-2T belongs to the genus Sphingomonas and showed the highest sequence similarity (96.7%) and less than 96.7% similarities to other type strains. The genome size of strain LB-2T was 4.10 Mb, with 66.8 mol% G + C content. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strains LB-2T and S. canadensis FWC47T were 77.8% and 21%, respectively. The predominant cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18 : 1ω6c) and C16:0. The major polar lipids were aminolipid, glycolipid, sphingoglycolipid, phosphatidylcholine, phosphatidylglycerol, four unidentified lipids, glycophospholipid, phosphatidylethanolamine and diphosphatidylglycerol. The predominant respiratory quinone was Q-10 and the major polyamine was sym-homospermidine. On the basis of phenotypic, genotypic and phylogenetic evidences, strain LB-2T represents a novel species in the genus Sphingomonas, for which the name Sphingomonas caeni sp. nov. is proposed. The type strain is LB-2T (GDMCC 1.3630T = NBRC 115,102T).


Phospholipids , Sphingomonas , Phospholipids/chemistry , Sewage , Phylogeny , RNA, Ribosomal, 16S/genetics , Ubiquinone/chemistry , Fatty Acids/chemistry , DNA , Sequence Analysis, DNA , Bacterial Typing Techniques , DNA, Bacterial/genetics
12.
Adv Sci (Weinh) ; 10(19): e2206098, 2023 07.
Article En | MEDLINE | ID: mdl-37142882

KMT2C and KMT2D are the most frequently mutated epigenetic genes in human cancers. While KMT2C is identified as a tumor suppressor in acute myeloid leukemia (AML), the role of KMT2D remains unclear in this disease, though its loss promotes B cell lymphoma and various solid cancers. Here, it is reported that KMT2D is downregulated or mutated in AML and its deficiency, through shRNA knockdown or CRISPR/Cas9 editing, accelerates leukemogenesis in mice. Hematopoietic stem and progenitor cells and AML cells with Kmt2d loss have significantly enhanced ribosome biogenesis and consistently, enlarged nucleolus, increased rRNA and protein synthesis rates. Mechanistically, it is found that KMT2D deficiency leads to the activation of the mTOR pathway in both mouse and human AML cells. Kmt2d directly regulates the expression of Ddit4, a negative regulator of the mTOR pathway. Consistent with the abnormal ribosome biogenesis, it is shown that CX-5461, an inhibitor of RNA polymerase I, significantly restrains the growth of AML with Kmt2d loss in vivo and extends the survival of leukemic mice. These studies validate KMT2D as a de facto tumor suppressor in AML and reveal an unprecedented vulnerability to ribosome biogenesis inhibition.


Leukemia, Myeloid, Acute , Humans , Animals , Mice , Leukemia, Myeloid, Acute/metabolism , Genes, Tumor Suppressor , TOR Serine-Threonine Kinases/metabolism , RNA, Small Interfering/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Ribosomes/pathology
13.
PLoS Biol ; 21(5): e3002088, 2023 05.
Article En | MEDLINE | ID: mdl-37130348

Leukemogenesis is proposed to be a multistep process by which normal hematopoietic stem and progenitor cells are transformed into full-blown leukemic cells, the details of which are not fully understood. Here, we performed serial single-cell transcriptome analyses of preleukemic and leukemic cells (PLCs) and constructed the cellular and molecular transformation trajectory in a Myc-driven acute myeloid leukemia (AML) model in mice, which represented the transformation course in patients. We found that the Myc targets were gradually up-regulated along the trajectory. Among them were splicing factors, which showed stage-specific prognosis for AML patients. Furthermore, we dissected the detailed gene network of a tipping point for hematopoietic stem and progenitor cells (HSPCs) to generate initiating PLCs, which was characterized by dramatically increased splicing factors and unusual RNA velocity. In the late stage, PLCs acquired explosive heterogeneity through RNA alternative splicing. Among them, the Hsp90aa1hi subpopulation was conserved in both human and mouse AML and associated with poor prognosis. Exon 4 skipping of Tmem134 was identified in these cells. While the exon skipping product Tmem134ß promoted the cell cycle, full-length Tmem134α delayed tumorigenesis. Our study emphasized the critical roles of RNA splicing in the full process of leukemogenesis.


Leukemia, Myeloid, Acute , Single-Cell Gene Expression Analysis , Humans , Animals , Mice , Leukemia, Myeloid, Acute/genetics , RNA Splicing/genetics , RNA , RNA Splicing Factors/genetics , Transcriptome/genetics
15.
Oncogenesis ; 12(1): 5, 2023 Feb 07.
Article En | MEDLINE | ID: mdl-36750552

Deletions of chromosome 17p, where TP53 gene locates, are the most frequent chromosome alterations in human cancers and associated with poor outcomes in patients. Our previous work suggested that there were p53-independent mechanisms involved in chromosome 17p deletions-driven cancers. Here, we report that altered arachidonate metabolism, due to the deficiency of mouse Alox8 on chromosome 11B3 (homologous to human ALOX15B on chromosome 17p), contributes to the B cell malignancy. While the metabolites produced from lipoxygenase pathway reduced, chromosome 11B3 deletions or Alox8 loss, lead to upregulating its paralleling cyclooxygenase pathway, indicated by the increased levels of oncometabolite prostaglandin E2. Ectopic PGE2 prevented the apoptosis and differentiation of pre-B cells. Further studies revealed that Alox8 deficiency dramatically and specifically induced Cox-2(Ptgs2) gene expression. Repressing Cox-2 by its shRNAs impaired the tumorigenesis driven by Alox8 loss. And, in turn, tumor cells with Alox8 or 11B3 loss were sensitive to the COX-2 inhibitor celecoxib. This correlation between COX-2 upregulation and chromosome 17p deletions was consistent in human B-cell lymphomas. Hence, our studies reveal that the arachidonate metabolism abnormality with unbalanced ALOX and COX pathways underlies human cancers with 17p deletions and suggest new susceptibility for this disease.

16.
Cell Rep ; 41(3): 111482, 2022 10 18.
Article En | MEDLINE | ID: mdl-36261019

Gastric cancer (GC) is one of the most frequent and lethal malignancies in the world. However, our understanding of the mechanisms underlying its initiation and progression is limited. Here, we generate a series of primary GC models in mice with genome-edited gastric organoids, which elucidate the genetic drivers for sequential transformation from dysplasia to well-differentiated and poorly differentiated GC. Further, we find that the orthotopic GC, but not the subcutaneous GC even with the same genetic drivers, display remote metastasis, suggesting critical roles of the microenvironment in GC metastasis. Through single-cell RNA-seq analyses and functional studies, we show that the interaction between fibronectin 1 on stomach-specific macrophages and integrin a6ß4 on GC cells promotes remote metastases. Taken together, our studies propose a strategy to model GC and dissect the genetic and microenvironmental factors driving the full-range gastric tumorigenesis.


Fibronectins , Stomach Neoplasms , Mice , Animals , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Cell Transformation, Neoplastic , Integrins , Tumor Microenvironment
17.
PLoS Genet ; 18(9): e1010425, 2022 09.
Article En | MEDLINE | ID: mdl-36149892

Transcriptional elongation is a universal and critical step during gene expression. The super elongation complex (SEC) regulates the rapid transcriptional induction by mobilizing paused RNA polymerase II (Pol II). Dysregulation of SEC is closely associated with human diseases. However, the physiological role of SEC during development and homeostasis remains largely unexplored. Here we studied the function of SEC in adipogenesis by manipulating an essential scaffold protein AF4/FMR2 family member 4 (AFF4), which assembles and stabilizes SEC. Knockdown of AFF4 in human mesenchymal stem cells (hMSCs) and mouse 3T3-L1 preadipocytes inhibits cellular adipogenic differentiation. Overexpression of AFF4 enhances adipogenesis and ectopic adipose tissue formation. We further generate Fabp4-cre driven adipose-specific Aff4 knockout mice and find that AFF4 deficiency impedes adipocyte development and white fat depot formation. Mechanistically, we discover AFF4 regulates autophagy during adipogenesis. AFF4 directly binds to autophagy-related protein ATG5 and ATG16L1, and promotes their transcription. Depleting ATG5 or ATG16L1 abrogates adipogenesis in AFF4-overepressing cells, while overexpression of ATG5 and ATG16L1 rescues the impaired adipogenesis in Aff4-knockout cells. Collectively, our results unveil the functional importance of AFF4 in regulating autophagy and adipogenic differentiation, which broaden our understanding of the transcriptional regulation of adipogenesis.


Adipogenesis , Transcriptional Elongation Factors/metabolism , Adipogenesis/genetics , Animals , Autophagy/genetics , Autophagy-Related Proteins/genetics , Cell Differentiation/genetics , Humans , Mice , RNA Polymerase II , Transcription Factors , Transcriptional Elongation Factors/genetics
18.
Cancer Cell ; 40(9): 1044-1059.e8, 2022 09 12.
Article En | MEDLINE | ID: mdl-36099882

Cisplatin-based chemotherapy remains the primary treatment for unresectable and metastatic muscle-invasive bladder cancers (MIBCs). However, tumors frequently develop chemoresistance. Here, we established a primary and orthotopic MIBC mouse model with gene-edited organoids to recapitulate the full course of chemotherapy in patients. We found that partial squamous differentiation, called semi-squamatization, is associated with acquired chemoresistance in both mice and human MIBCs. Multi-omics analyses showed that cathepsin H (CTSH) is correlated with chemoresistance and semi-squamatization. Cathepsin inhibition by E64 treatment induces full squamous differentiation and pyroptosis, and thus specifically restrains chemoresistant MIBCs. Mechanistically, E64 treatment activates the tumor necrosis factor pathway, which is required for the terminal differentiation and pyroptosis of chemoresistant MIBC cells. Our study revealed that semi-squamatization is a type of lineage plasticity associated with chemoresistance, suggesting that differentiation via targeting of CTSH is a potential therapeutic strategy for the treatment of chemoresistant MIBCs.


Carcinoma, Squamous Cell , Urinary Bladder Neoplasms , Animals , Carcinoma, Squamous Cell/drug therapy , Cell Differentiation , Cisplatin , Humans , Mice , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
19.
Genes Dis ; 9(6): 1662-1673, 2022 Nov.
Article En | MEDLINE | ID: mdl-36157477

Understanding the association between the genetic and clinical phenotypes in children with nephrotic syndrome (NS) of different etiologies is critical for early clinical guidance. We employed whole-exome sequencing (WES) to detect monogenic causes of NS in a multicenter cohort of 637 patients. In this study, a genetic cause was identified in 30.0% of the idiopathic steroid-resistant nephrotic syndrome (SRNS) patients. Other than congenital nephrotic syndrome (CNS), there were no significant differences in the incidence of monogenic diseases based on the age at manifestation. Causative mutations were detected in 39.5% of patients with focal segmental glomerulosclerosis (FSGS) and 9.2% of those with minimal change disease (MCD). In terms of the patterns in patients with different types of steroid resistance, a single gene mutation was identified in 34.8% of patients with primary resistance, 2.9% with secondary resistance, and 71.4% of children with multidrug resistance. Among the various intensified immunosuppressive therapies, tacrolimus (TAC) showed the highest response rate, with 49.7% of idiopathic SRNS patients achieving complete remission. Idiopathic SRNS patients with monogenic disease showed a similar multidrug resistance pattern, and only 31.4% of patients with monogenic disease achieved a partial remission on TAC. During an average 4.1-year follow-up, 21.4% of idiopathic SRNS patients with monogenic disease progressed to end-stage renal disease (ESRD). Collectively, this study provides evidence that genetic testing is necessary for presumed steroid-resistant and idiopathic SRNS patients, especially those with primary and/or multidrug resistance.

20.
Nat Cancer ; 3(6): 753-767, 2022 06.
Article En | MEDLINE | ID: mdl-35449309

Small cell lung cancer (SCLC) is notorious for its early and frequent metastases, which contribute to it as a recalcitrant malignancy. To understand the molecular mechanisms underlying SCLC metastasis, we generated SCLC mouse models with orthotopically transplanted genome-edited lung organoids and performed multiomics analyses. We found that a deficiency of KMT2C, a histone H3 lysine 4 methyltransferase frequently mutated in extensive-stage SCLC, promoted multiple-organ metastases in mice. Metastatic and KMT2C-deficient SCLC displayed both histone and DNA hypomethylation. Mechanistically, KMT2C directly regulated the expression of DNMT3A, a de novo DNA methyltransferase, through histone methylation. Forced DNMT3A expression restrained metastasis of KMT2C-deficient SCLC through repressing metastasis-promoting MEIS/HOX genes. Further, S-(5'-adenosyl)-L-methionine, the common cofactor of histone and DNA methyltransferases, inhibited SCLC metastasis. Thus, our study revealed a concerted epigenetic reprogramming of KMT2C- and DNMT3A-mediated histone and DNA hypomethylation underlying SCLC metastasis, which suggested a potential epigenetic therapeutic vulnerability.


DNA Methyltransferase 3A , Histone-Lysine N-Methyltransferase , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A/genetics , DNA Modification Methylases/genetics , Epigenesis, Genetic/genetics , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Methyltransferases/genetics , Mice , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/secondary
...